This commit is contained in:
Paweł Sadowski 2025-10-21 18:09:18 +00:00
commit e5ac64c848
5 changed files with 228 additions and 0 deletions

13
Pipfile Normal file
View File

@ -0,0 +1,13 @@
[[source]]
url = "https://pypi.org/simple"
verify_ssl = true
name = "pypi"
[packages]
numpy = "*"
matplotlib = "*"
[dev-packages]
[requires]
python_version = "3.13"

80
apc_perf.py Normal file
View File

@ -0,0 +1,80 @@
from dataclasses import dataclass
from functools import cache, cached_property
import re
from typing import Collection, Mapping, Self, Sequence
from utils import lin_fun_interpolate, with_ops_scalar, with_ops_unary, with_ops_vector
MPH = 0.44704
@with_ops_unary('neg')
@with_ops_vector('sub', 'add')
@with_ops_scalar('mul', 'truediv')
@dataclass(frozen=True)
class PropOppoint:
speed: float
thrust: float
torque: float
rpm: float
def __neg__(self) -> Self: ...
def __truediv__(self, other: float) -> Self: ...
def __mul__(self, other: float) -> Self: ...
def __add__(self, other: Self) -> Self: ...
def __sub__(self, other: Self) -> Self: ...
@dataclass(frozen=True)
class ApcPerfdata:
oppoints: Collection[PropOppoint]
@cached_property
def rpms(self) -> Collection[float]:
return { op.rpm for op in self.oppoints }
def _rpm_serie(self, rpm: float) -> Sequence[PropOppoint]:
return sorted([op for op in self.oppoints if op.rpm == rpm], key=lambda op: op.speed)
@cached_property
def rpm_series(self) -> Mapping[float, Sequence[PropOppoint]]:
return { rpm: self._rpm_serie(rpm) for rpm in self.rpms }
def get_op_interpspeed(self, rpm: float, speed: float) -> PropOppoint:
s = self.rpm_series[rpm]
def mk_op(op):
return lambda: op
return lin_fun_interpolate([op.speed for op in s], [mk_op(op) for op in s], speed)
@classmethod
def from_file(cls, path: str):
with open(path, 'r') as file:
cont = file.read()
data = parse_apc_data(cont)
return cls(data)
def parse_apc_data(raw_data: str) -> Collection[PropOppoint]:
data_points = []
current_rpm = None
for line in raw_data.splitlines():
if 'PROP RPM' in line:
current_rpm = float(line.split()[-1])
elif current_rpm is None:
continue
try:
vals = list(map(float, line.split()))
except ValueError:
continue
if len(vals) != 15:
continue
speed = vals[0] * MPH
thrust = vals[9]
torque = vals[10]
data_points.append(PropOppoint(speed, thrust, torque, current_rpm))
return data_points

1
data/PERFILES2 Symbolic link
View File

@ -0,0 +1 @@
/home/Downloads/APC_perf/PERFILES_WEB/PERFILES2

33
test.py Normal file
View File

@ -0,0 +1,33 @@
from apc_perf import ApcPerfdata
import matplotlib.pyplot as plt
from typing import Collection
from dataclasses import dataclass
from collections import defaultdict
import numpy as np
def plot_prop_op_points(apc_data: ApcPerfdata, rpm: float):
rpm_series = apc_data.rpm_series[rpm]
speeds = [op.speed for op in rpm_series]
thrusts = [op.thrust for op in rpm_series]
torques = [op.torque for op in rpm_series]
fig, ax1 = plt.subplots(figsize=(10, 6))
ax1.plot(speeds, thrusts, label="Thrust", marker='o', color='tab:blue')
ax1.set_xlabel("Speed")
ax1.set_ylabel("Thrust", color='tab:blue')
ax1.tick_params(axis='y', labelcolor='tab:blue')
ax2 = ax1.twinx()
ax2.plot(speeds, torques, label="Torque", marker='s', color='tab:orange')
ax2.set_ylabel("Torque", color='tab:orange')
ax2.tick_params(axis='y', labelcolor='tab:orange')
plt.title(f"PropOppoint Variables vs Speed at RPM {rpm}")
fig.tight_layout()
plt.show()
p = ApcPerfdata.from_file('./data/PERFILES2/PER3_10x3.dat')
plot_prop_op_points(p, 1000)

101
utils.py Normal file
View File

@ -0,0 +1,101 @@
from dataclasses import fields, is_dataclass
from typing import Callable, Protocol, Self, Sequence, TypeVar
import operator
class Interpolable(Protocol):
def __add__(self: Self, other: Self, /) -> Self: ...
def __mul__(self: Self, other: float, /) -> Self: ...
def __neg__(self: Self, /) -> Self: ...
EXTRAPOLATE_NONE = 0
EXTRAPOLATE_CONST = 1
EXTRAPOLATE_LIN = 2
T1 = TypeVar('T1', bound=Interpolable)
def lin_fun_interpolate(x_values: Sequence[float], y_values: Sequence[Callable[[], T1]], x: float, extr_down = EXTRAPOLATE_NONE, extr_up = EXTRAPOLATE_NONE) -> T1:
# x0,x1,y0,y1 = None
if x < x_values[0]:
if extr_down == EXTRAPOLATE_NONE:
raise ValueError("x is outside the interpolation range!")
elif extr_down == EXTRAPOLATE_CONST:
return y_values[0]()
elif extr_down == EXTRAPOLATE_LIN:
pass
else:
raise ValueError('Invalid extrapoltion method')
for i in range(1, len(x_values)):
x0, x1 = x_values[i-1], x_values[i]
y0, y1 = y_values[i-1](), y_values[i]()
if x_values[i] > x:
break
else:
if extr_up == EXTRAPOLATE_NONE:
raise ValueError("x is outside the interpolation range!")
elif extr_up == EXTRAPOLATE_CONST:
return y1
elif extr_up == EXTRAPOLATE_LIN:
pass
else:
raise ValueError('Invalid extrapoltion method')
return y0 + (y1 - y0) * (x - x0) / (x1 - x0)
# Operators
def map_fields(obj, func):
if not is_dataclass(obj):
raise TypeError("Expected dataclass instance")
cls = type(obj)
return cls(**{
f.name: func(f.name, getattr(obj, f.name))
for f in fields(obj)
})
def apply_binary_vector_op(a, b, op):
if type(a) is not type(b):
return NotImplemented
return map_fields(a, lambda name, val: op(val, getattr(b, name)))
def apply_scalar_op(a, scalar, op):
if not isinstance(scalar, (int, float)):
return NotImplemented
return map_fields(a, lambda name, val: op(val, scalar))
def apply_rscalar_op(a, scalar, op):
if not isinstance(scalar, (int, float)):
return NotImplemented
return map_fields(a, lambda name, val: op(scalar, val))
def apply_unary_op(a, op):
return map_fields(a, lambda name, val: op(val))
def _add_ops(cls, op_names, method_name_fn, apply_func):
for name in op_names:
magic = method_name_fn(name)
op = getattr(operator, name)
def method(self, other=None, *, _op=op, _name=name):
if other is None:
return apply_func(self, _op)
return apply_func(self, other, _op)
setattr(cls, magic, method)
return cls
def with_ops_vector(*op_names):
return lambda cls: _add_ops(cls, op_names, lambda name: f"__{name}__", apply_binary_vector_op)
def with_ops_scalar(*op_names):
return lambda cls: _add_ops(cls, op_names, lambda name: f"__{name}__", apply_scalar_op)
def with_ops_rscalar(*op_names):
return lambda cls: _add_ops(cls, op_names, lambda name: f"__r{name}__", apply_rscalar_op)
def with_ops_unary(*op_names):
return lambda cls: _add_ops(cls, op_names, lambda name: f"__{name}__", apply_unary_op)